
# **SSI Prevention: The Power is in the Bundle**

Jacqueline Daley HBSc, MLT, CIC, CSPDS, FAPIC Southern California Regional Director Infection Prevention Providence Health Services Irvine, California



#### **Conflict of Interest Statement**

- 3M Educational Consultant
- Stryker/Sage Education Consultant
- Boston Scientific Education Consultant

## **Objectives**

- Discuss the burden associated with surgical site infections
- Discuss the role of antimicrobial resistance in surgical site infections
- Describe three strategic interventions as part of a bundle to reduce the risk of surgical site infections



Discuss the burden associated with surgical site infections

#### **Burden of Surgical Site Infection (SSI)**

SSIs are the most common adverse event for surgical patients Second most common type of adverse event occurring in hospitalized patients 2%-5% of patient undergoing inpatient surgery in the USA will have an SSI

~160,000 – 300,000 SSIs occur each year in the USA

Up to 60% of SSIs are estimated to be preventable

CDC Surgical Site Infection Event Procedure Associated Module January 2016

5 Million Lives Campaign. Getting Started Kit:: Prevent Surgical Site Infections How to Guide. Cambridge, MA: Institute of Health Care Improvement; 2008

Anderson, DJ, Podgorny, K et al. Strategies to Prevent Surgical Site Infections in Acute Care Hospital: 2014 Update. SHEA/IDSA Practice Recommendations Kurtz, Steven, Lau, Edmund et. al. Infection Burden for

Hip and Knee Arthroplasty in the United States. The Journal of Arthroplasty. 2008; 23(7):984-991)

APIC Implementation Guide. Infection Preventionist's Guide to the OR. 2018. www.apic.org/implementationguides

Ban, KA et. al. American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update. J Am Coll Surg2017; 224(1):59-73

## **Burden of Surgical Site Infections (SSI)**

- Outcomes associated with SSI
  - Approx. 7-10 additional post-op hospital days (deep and organ-space infection much longer)
  - Are 5 times more likely to be re-admitted
  - Have a 60% increase in ICU admissions
  - 2-11 times higher risk of death
  - 77% of deaths among patients with SSI are directly attributable to SSI.
  - Attributable cost estimates range from \$3,000-\$29,000 (maybe more for deep and organ-space infections)
  - SSIs are believed to account for up to \$10 billion annually in healthcare expenditures

#### Estimated that up to 60% of SSIs are preventable!

Anderson, DJ, Podgorny, K et al. Strategies to Prevent Surgical Site Infections in Acute Care Hospitals: Update 2014. SHEA/IDSA Practice Recommendations

The Joint Commission's Implementation Guide for NPSG.07.05.01 on Surgical Site Infections (SSIs)

APIC Implementation Guide. Infection Preventionist's Guide to the OR. 2018. www.apic.org/implementationguides

Ban, KA et. al. American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update. J Am Coll Surg2017; 224(1):59-73

## **Burden of SSI – Unavoidable Facts**

- Surgical Site Infection (SSI)
  - One of the most expensive HAI based on costs during index hospital stay<sup>1</sup>
  - Mean cost without SSI = \$36,253; additional cost due to SSI = \$32,1871
  - Aggregate cost = \$31.6 million<sup>1</sup>
  - SSI increased the cost of an index stay by 52%<sup>1</sup>
  - 2020-2030 13% increase in arthroplasties with a 14% increase in SSI if there is no decrease in SSI rates<sup>2</sup>
  - 60%-70% of arthroplasties and SSIs occur in 65 and older age group<sup>2</sup>
  - Projected burden = 77,653 SSIs (15,820,475 primary and revision procedures)<sup>2</sup>
  - Hip arthroplasties contributed 54% of total SSIs<sup>2</sup>

<sup>1.</sup> Anand P. et al. Estimating the hospital costs of inpatient harms. Health Serv Res. 2018;1-11

<sup>2.</sup> Wolford, HM et al. The projected burden of complex surgical site infections following hip and knee arthroplasties in adults in the United States, 2020 through 2030. Infection Control & Hospital Epidemiology 2018; 39:1189-1195



Discuss the role of antimicrobial resistance in surgical site infections

#### **Surgical Site Infections and Antibiotic Resistance**

Antibiotic resistance in the USA

✓ More than 2.8 million antibiotic-resistant infections occur each year

✓ More than 35,000 people die as a result

- ✓ Nearly 223,900 people required hospital care for *C. difficile* ✓ At least 12,800 people died in 2017.
- Jeopardizes advancements in modern health care that we have come to rely on, such as joint replacements, organ transplants, and cancer therapy
  - Have a significant risk of infection
  - Patients will not be able to receive treatment if effective antibiotics are not available

#### **Surgical Site Infections and Antibiotic Resistance**

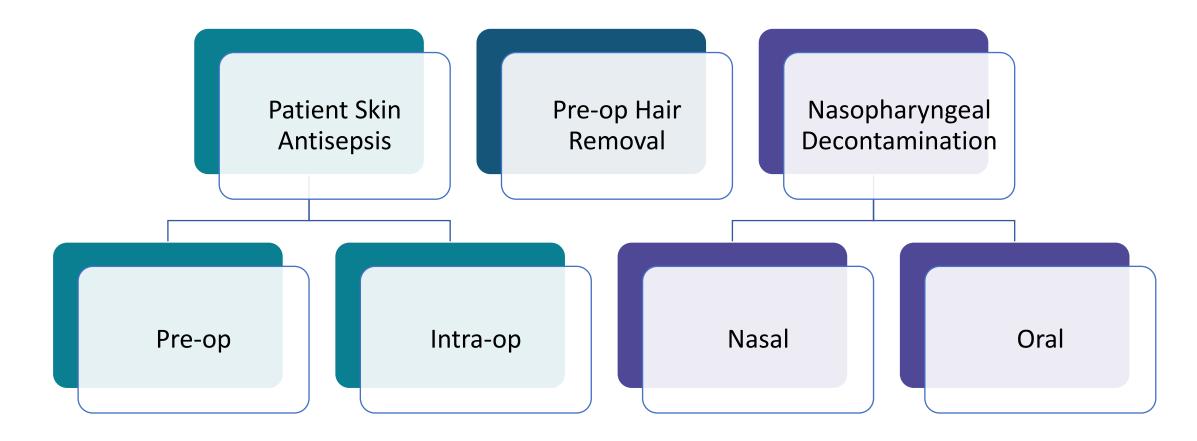
Addressing this threat requires continued aggressive action

✓ Preventing infections in the first place

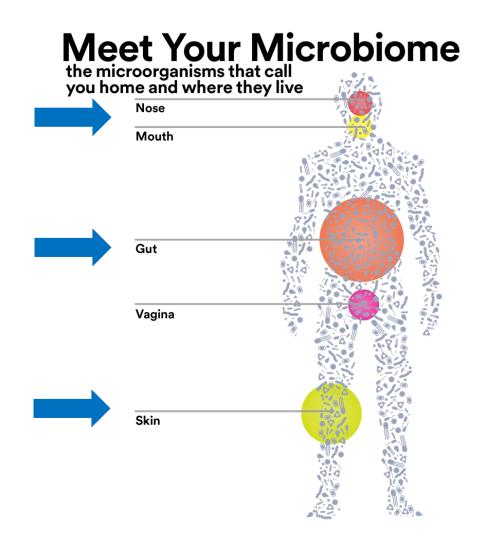
✓ Slowing the development of resistance through improved antibiotic use

✓ Stopping the spread of resistance when it does develop

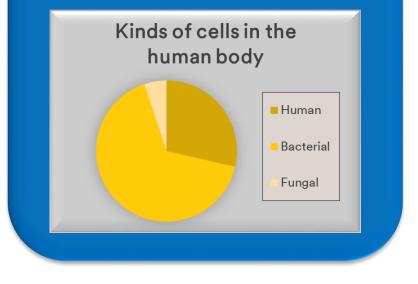
#### Surgical Site Infections and Antibiotic Resistance


- The Bottom Line
  - Surgery Patients who have surgery are at risk for surgical site infections.
  - Without effective antibiotics to prevent and treat surgical infections, many surgeries would not be possible today.




Describe three strategic interventions as part of a bundle to reduce the risk of surgical site infections

## **SSI Prevention Bundle Elements**


Set of evidence-based interventions that, when implemented as a whole for all patients, consistently, may result in improved patient outcomes.



# Patient Skin Antisepsis



#### 37 Trillion Human Cells 100 Trillion Microbial Cells



Antibiotic use can also disrupt the human or animal microbiome, the community of naturally occurring germs in and on the body. A healthy microbiome is important for staying healthy and preventing disease. A disrupted microbiome can put people and animals at risk for getting some types of infection, such as *C. difficile.*<sup>2</sup>

1. American Society for Microbiology Academy. FAQ: Human Microbiome 2014. Retrieved December 08, 2016, from http://academy.asm.org/index.php/faq-series/5122-humanmicrobiome

2. ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf

## Human Microbiome and Surgical Site Infection (SSIs)

#### **Review Hypothesis**

- If clinicians control the microbiome perioperatively, they might prevent SSIs
- Control the microbiome of the skin and nasal passages, we can greatly reduce SSI rates
- Failure to control the microbiome, surgery patient may develop an SSI
- Key Conclusion
- "Almost all SSIs arise from the patient's own microbiome"
- "The occurrence of SSIs can be viewed as a perioperative failure to control the microbiome"

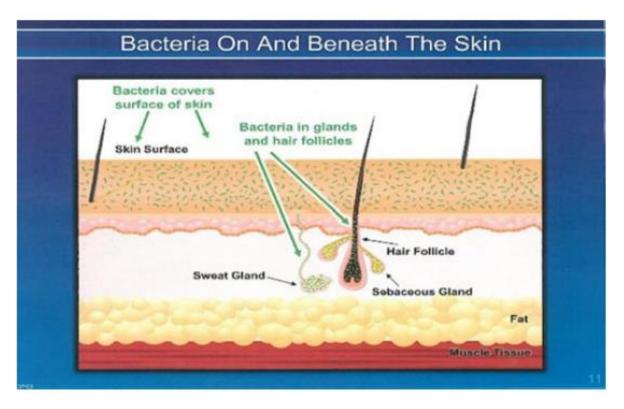



Fig. 1. The sweat glands help regulate temperature, and the sebaceous glands provide sebum which lubricates the top layers of skin and provides a waterproof surface. Importantly, bacteria of the microbiome reside not only on the skin surface (epidermis) but also on the hair follicles and in both sweat glands and sebaceous glands (dermis).

#### Distribution and Rank Order of the 15 Most Frequently Reported Adult Surgical Site Infection (SSI) Pathogens, by Surgical Category, 2015–2017

|                                       | All Surgery Types <sup>b</sup> |      | Abdominal <sup>c</sup> | Orthopedic <sup>d</sup> | Ob/Gyn <sup>e</sup>  | Cardiac <sup>f</sup> |
|---------------------------------------|--------------------------------|------|------------------------|-------------------------|----------------------|----------------------|
| Pathogen                              | No. (%)<br>Pathogens           | Rank | No. (%)<br>Pathogens   | No. (%)<br>Pathogens    | No. (%)<br>Pathogens | No. (%)<br>Pathogens |
| Staphylococcus aureus                 | 26,970 (17.5)                  | 1    | 6,193 (7.4)            | 13,968 (38.6)           | 30)2 (15.2)          | 2,331 (27.0)         |
| Escherichia coli                      | 21,746 (14.1)                  | 2    | 16,378 (19.7)          | 1,737 (4.8)             | 2,778 (13.7)         | 478 (5.5)            |
| Enterococcus faecalis <sup>g</sup>    | 12,267 (8.0)                   | 3    | 8,053 (9.7)            | 1,779 (4.9)             | 1,862 (9.2)          | 281 (3.2)            |
| Coagulase-negative staphylococci      | 11,106 (7.2)                   | 4    | 2,980 (3.6)            | 4,693 (13.0)            | 1,476 (7.3)          | 1,288 (14.9)         |
| Pseudomonas aeruginosa                | 8,956 (5.8)                    | 5    | 4,787 (5.7)            | 2,184 (6.0)             | 907 (4.5)            | 658 (7.6)            |
| Selected Klebsiella spp               | 7,789 (5.1)                    | 6    | 4,894 (5.9)            | 1,167 (3.2)             | 917 (4.5)            | 518 (6.0)            |
| Bacteriodes spp                       | 7,321 (4.7)                    | 7    | 5,968 (7.2)            | 150 (0.4)               | 1,100 (5.4)          | 38 (0.4)             |
| Enterobacter spp                      | 7,178 (4.7)                    | 8    | 3,691 (4.4)            | 1,797 (5.0)             | 793 (3.9)            | 538 (6.2)            |
| Other Enterococcus spp <sup>g,h</sup> | 5,444 (3.5)                    | 9    | 4,279 (5.1)            | 491 (1.4)               | 503 (2.5)            | 85 (1.0)             |
| Candida albicans <sup>g</sup>         | 4,847 (3.1)                    | 10   | 4,131 (5.0)            | 259 (0.7)               | 216 (1.1)            | 142 (1.6)            |
| Enterococcus faecium <sup>g</sup>     | 4,515 (2.9)                    | 11   | 3,942 (4.7)            | 324 (0.9)               | 139 (0.7)            | 53 (0.6)             |
| Proteus spp                           | 4,357 (2.8)                    | 12   | 1,542 (1.9)            | 1,356 (3.8)             | 888 (4.4)            | 400 (4.6)            |
| Viridans group streptococci           | 4,267 (2.8)                    | 13   | 3,112 (3.7)            | 323 (0.9)               | 601 (3.0)            | 101 (1.2)            |
| Citrobacter spp                       | 2,099 (1.4)                    | 14   | 1,395 (1.7)            | 249 (0.7)               | 275 (1.4)            | 105 (1.2)            |
| Serratia spp                          | 1,904 (1.2)                    | 15   | 357 (0.4)              | 649 (1.8)               | 230 (1.1)            | 475 (5.5)            |
| Other                                 | 23,367 (15.2)                  |      | 11,595 (13.9)          | 5,021 (13.9)            | 4,568 (22.5)         | 1,156 (13.4)         |
| Total                                 | 154,133 (100.0)                |      | 83,297 (100.0)         | 36,147 (100.0)          | 20,345 (100.0)       | 8,647 (100.0)        |

Weiner-Lastinger, LM et. al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infection Control & Hospital Epidemiology (2020), 41, 1–18

# Pre-Op Skin Antisepsis

#### **Preoperative Cleansing Recommended Practice**

#### CDC – Guideline for Prevention of Surgical Site Infections, 2017<sup>1</sup>

"Before surgery, patients should shower or bathe (full body) with soap (antimicrobial or non-antimicrobial) or an
antiseptic agent on at least the night before the operative day" (Category IB-strong recommendation; accepted practice.)

#### SHEA/IDSA\* – Strategies to Prevent Surgical Site Infections, 2014<sup>2</sup>

• "Preoperative bathing with chlorhexidine-containing products" (Unresolved issue). To gain the maximum antiseptic effect of chlorhexidine, adequate levels of CHG must be achieved and maintained on the skin.

#### AORN – Perioperative Standards and Recommended Practices, 2018<sup>3</sup>

- "The collective evidence supports that preoperative patient bathing may reduce the microbial flora on the patient's skin before surgery."
- "The patient should be instructed to bathe or shower before surgery with either soap or a skin antiseptic on at least the night before or the day of surgery."
- Although many studies support the use of 2% CHG cloths for preoperative bathing, additional research is needed before a practice recommendation can be made."

#### NICE – National Institute for Health and Care Excellence 2019<sup>4</sup>

- "Advise patients to shower or have a bath (or help patients to shower, bath or bed bath) using soap, either the day before, or on the day of, surgery."
- "Consider nasal mupirocin in combination with a chlorhexidine body wash before procedures in which *Staphylococcus aureus* is a likely cause of a surgical site infection."

3. AORN. Guidelines for Perioperative Practice, Denver, Colorado: AORN, Inc : 2018

<sup>1.</sup> Centers for Disease Control and Prevention, "Guideline for Prevention of Surgical Site Infections," JAMA Surg. doi:10.1001/jamasurg.2017.0904

<sup>2.</sup> Anderson, D.J., et al, Strategies to Prevent Surgical Site Infection in Acute Care Hospitals: 2014 Update. Infect Control Hosp Epidemiol 2014; 35(6): 605-627.

<sup>4.</sup> NICE Guidelines. Surgical site infections: prevention and treatment. 11 April 2019. <u>https://www.nice.org.uk/guidance/ng125/resources/surgical-site-infections-prevention-and-treatment-pdf-66141660564421</u> Last updated: 19 August 2020

# **CHG Preoperative Cleansing**

#### **Clinical Evidence**

## **CHG Preoperative Cleansing**

- The patient's endogenous flora is the leading cause of SSI and antiseptics decrease bacteria present on the skin<sup>1</sup>
- Preoperative bathing with CHG is effective in reducing skin flora, the same effect is not achieved with the use of soap alone<sup>2-4</sup>
- Review by Webster<sup>5</sup> did not show a statistically significant reduction in SSI, the studies included were limited to use of 4% CHG
- Use of a non-rinseable form of CHG (2% impregnated cloths) results in a significantly increased reduction in skin flora compared to 4% CHG showers. This reduction was greater with repeated application<sup>6</sup>
- Routine pre-operative bathing with chlorhexidine (when not part of a decolonization protocol or pre-operative bundle) decreases skin surface pathogen concentrations but has not been shown to reduce SSI<sup>7</sup>

<sup>1.</sup> Mangram AJ, et al. Guideline for prevention of surgical site infection. Infection Control and Hospital Epidemiology 1999; 20(4):247-78.

<sup>2.</sup> Garibaldi RA Prevention of intraoperative wound contamination with chlorhexidine shower and scrub. J Hosp Infect 1988;11(Suppl B):5–9.

<sup>3.</sup> Hayek L, Emerson JM, Gardner AMN. A placebo-controlled trial of the effect of two preoperative baths or showers with chlorhexidine detergent on postoperative wound infection rates. J Hosp Infect 1987;10:165–72.

<sup>4.</sup> Murray MR, et al. Efficacy of preoperative home use of 2% Chlorhexidine Gluconate cloth before shoulder surgery. J Shoulder Elbow Surg 2011; 20: 928-33.

<sup>5.</sup> Webster J, Osborne S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection (Review). *The Cochrane Library* 2012; 9.

<sup>6.</sup> Edmiston CE Jr. et al. Preoperative shower revisited: Can high topical antiseptic levels be achieved on the skin surface before surgical admission? J Am Coll Surg 2008;207(2):233-9.

<sup>7.</sup> Ban, KA et. al. Executive Summary of the American College of Surgeons/Surgical Infection Society Surgical Site Infection Guidelines—2016 Update. SURGICAL INFECTIONS Volume 18, Number 4, 2017

## **CHG Preoperative Cleansing**

- Meta-analysis by Chlebicki, et al<sup>1</sup> did not find a significant reduction in SSI rates
  - Varying/lack of application protocols (multiple vs. single application) and CHG concentrations
- Additional studies specifically examining the effect of 2% CHG cloths demonstrate an appreciable impact on SSI<sup>2-6</sup>
  - Recent systematic review that included studies with consistent bathing protocols of two preoperative baths, found that the use of 2% CHG cloths significantly reduced SSI risk<sup>7</sup>
  - Low risk and low-cost intervention that has shown to be effective in reducing bacteria on the skin, a risk factor for SSI

<sup>1.</sup> Chlebicki MP, et al. Preoperative Chlorhexidine shower or bath for prevention of surgical site infection: A meta-analysis. AJIC 2013; 41:167-73.

<sup>2.</sup> Eislet D. Presurgical Skin Preparation With a Novel 2% Chlorhexidine Gluconate Cloth Reduces Rates of Surgical Site Infection in Orthopaedic Surgical Patients. Orthopaedic Nursing 2009; 28(3): 141-45.

<sup>3.</sup> Johnson AJ, et al. Preoperative Chlorhexidine preparation and the incidence of surgical site infections after hip arthroplasty. J Arthroplasty 2010; 25(Suppl 6): 98-102.

<sup>4.</sup> Zywiel MG, et al. Advance pre-operative Chlorhexidine reduces the incidence of surgical site infections in knee arthroplasty. International Orthopaedics 2011; 35(7): 1001-06.

<sup>5.</sup> Graling PR, Vasaly FW. Effectiveness of 2% CHG cloth bathing for reducing Surgical Site Infections. AORN 2013; 97(5): 547-51.

<sup>6.</sup> Kapadia BH, et al. Pre-admission Cutaneous Chlorhexidine Preparation Reduces Surgical Site Infections In Total Hip Arthroplasty. J Arthroplasty 2013; 28:490–93.

<sup>7.</sup> Karki S, Cheng AC. Impact of non-rinse cleansing with Chlorhexidine Gluconate on prevention of healthcare-associated infections and colonization with multi-resistant organisms: a systematic review. J Hosp Infect 2012; 82:71-84.

## **Summary - Preoperative Wipes or Showers**

- Reduces the bacterial burden on the patient's skin prior to surgical incision
- Practical problems: patient compliance, patient's ability to bath/shower, and consistency in method of preparation
- 2% CHG impregnated cloth shown to be more effective than 4% CHG liquid detergent in multiple studies
  - Patient information regarding CHG
  - Inactivated by soaps and shampoos
  - Keep out of eyes and ears
  - Do not use lotions, powders, or creams after application





# Patient Skin Antisepsis

#### **Operating Room**

## **Preoperative Skin Antisepsis**

| SHEA<br>IDSA <sup>1</sup>                                                                                        | "Wash and clean skin around incision site; Use a dual agent skin preparation containing alcohol, unless contraindication exists"                                                                                                                                                                                                                                                                                                          |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CDC <sup>2</sup><br>Guideline for the Prevention of<br>Surgical Site Infection <sup>2</sup>                      | "Perform intraoperative skin preparation with an alcohol-based<br>antiseptic agent unless contraindicated. (Category IA–strong recommendation; high-quality evidence.)"                                                                                                                                                                                                                                                                   |  |  |  |
| AORN <sup>3</sup>                                                                                                | Recommendation III<br>"The collective evidence indicates that there is no one antiseptic that is more effective than another for<br>preventing SSI."                                                                                                                                                                                                                                                                                      |  |  |  |
| NQF: Safe Practice #22 <sup>4</sup>                                                                              | Preoperatively use solutions that contain isopropyl alcohol as skin antiseptic preparation until other alternatives have been proven as safe and effective, and allow appropriate drying time per product guidelines                                                                                                                                                                                                                      |  |  |  |
| <b>NICE</b><br>National Institute for Health and<br>Care Excellence SSI Prevention<br>and Treatment <sup>5</sup> | Prepare the skin at the surgical site immediately before incision using an antiseptic preparation.<br>Be aware of the risks of using skin antiseptics in babies, in particular the risk of severe chemical injuries with the<br>use of chlorhexidine (both alcohol-based and aqueous solutions) in preterm babies.<br>When deciding which antiseptic skin preparation to use<br>(See options may include those in Table 1 of guidelines). |  |  |  |

1. Anderson, D.J.et al. Strategies to Prevent Surgical Site Infection in Acute Care Hospitals: 2014 Update. Retrieved from www.jstor.org DOI: 10.1086/676022

- 2. CDC HICPAC Guideline for the Prevention of Surgical Site Infection. JAMA, May 2017. http://jamanetwork.com/journals/jamasurgery/fullarticle/2623725
- 3. AORN. Guideline for Preoperative Patient Skin Antisepsis. *Guidelines for Perioperative Practices*. Denver, Colorado: AORN, Inc. 2018.

4. National Quality Forum 2010 safe practice #22 on surgical site infection.

5. NICE Guidelines. Surgical site infections: prevention and treatment. 11 April 2019. <u>https://www.nice.org.uk/guidance/ng125/resources/surgical-site-infections-prevention-and-treatment-pdf-66141660564421</u> Last updated: 19 August 2020

#### **Preoperative Skin Antisepsis**

#### Skin Preparation

- Alcohol-containing preparation should be used unless contraindication exists (fire hazard, surfaces involving mucosa, cornea, or ear)
- No clear superior agent (chlorhexidine vs. iodine) when combined with alcohol
- If alcohol cannot be included in the preparation, chlorhexidine should be used instead of iodine unless contraindications exist

#### **Things to Consider when Choosing a Surgical Prep**

- Safety and Efficacy should be the overarching considerations
  - Does the patient have any allergies or sensitivities?
  - Is the patient under two months of age?
  - Is the skin intact?
  - Where is the surgical procedure site (e.g., abdomen, chest, extremities, etc.)?
  - What are the active ingredients in the prep?
  - Does the procedure involve prepping a large surface area?

#### **Baseline Considerations**

#### **Patient Factors**

- Allergies / sensitivities
- Age of patient
- Skin condition / pigmentation
- Location / Type of procedure

#### **Active Ingredients**

- Aqueous solution
- Dual active solution

#### Size of Area Being Prepped

• Use an appropriately sized applicator to prep an area larger than the incision site

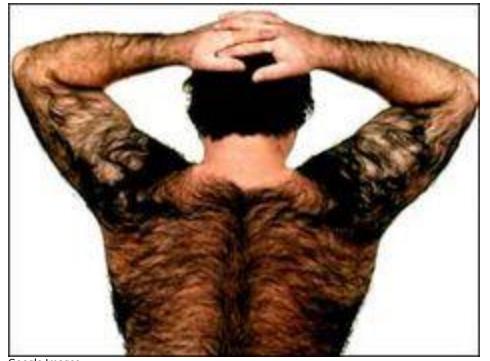
## **Patient Skin Antisepsis in the Operating Room**

- Method of application on the skin follow the manufacturer's written instructions for use
  - Concentric circles vs. back-and-forth motion
  - Allow to dry for recommended time
- Other skin prep
  - Removing or wiping off the skin prep after application
  - Using an antiseptic impregnated drape
  - Painting the skin with antiseptic
  - Using a clean vs. sterile surgical skin prep kit

# **Pre-op Hair Removal**

#### **Clipping Guidelines**

| CDC<br>Published 2017                                                                                                                                                                                                                   | WHO<br>Published 2016                                                                                                                                                       |   | NICE<br>Published 2008                                                                                                                                                                                                                                                                                                         |   | AORN<br>Published 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Do not remove hair<br>preoperatively unless<br>the hair at or around<br>the incision site will<br>interfere with the<br>operation.<br>If hair removal is<br>necessary, remove<br>immediately before<br>the operation, with<br>clippers. | <ul> <li>For all surgery types,<br/>hair either not<br/>removed or if<br/>absolutely necessary,<br/>then use clipper.</li> <li>Shaving strongly<br/>discouraged.</li> </ul> | • | Do not use hair<br>removal routinely to<br>reduce the risk of<br>surgical site infection.<br>If hair has to be<br>removed, use electric<br>clippers with a <u>single-<br/>use head</u> on the day<br>of surgery.<br>Do not use razors for<br>hair removal, because<br>they increase the risk<br>of surgical site<br>infection. |   | <ul> <li>Hair removal at the surgical site should be performed only in select clinical situations.</li> <li>When necessary, hair at the surgical site should be removed by <u>clipping or</u> <u>depilatory</u> methods in a manner that minimizes injury to the skin.</li> <li>Single-use clipper heads should be used and disposed of after <u>each patient</u> use. The reusable clipper handle should be disinfected after each use.</li> <li>Patients should be instructed not to shave at home.</li> </ul> |
|                                                                                                                                                                                                                                         |                                                                                                                                                                             |   |                                                                                                                                                                                                                                                                                                                                | 1 | Hair should be removed in a location<br>outside the operating room or procedure room.                                                                                                                                                                                                                                                                                                                                                                                                                            |


<sup>1.</sup> Centers for Disease Control and Prevention, "Guideline for Prevention of Surgical Site Infections," JAMA Surg. doi:10.1001/jamasurg.2017.0904

<sup>2.</sup> Global Guidelines for the Prevention of Surgical Site Infection <u>https://www.who.int/teams/integrated-health-services/infection-prevention-control/surgical-site-infection</u>

<sup>3.</sup> NICE Guidelines. Surgical site infections: prevention and treatment. 11 April 2019. https://www.nice.org.uk/guidance/ng125/resources/surgical-site-infections-prevention-and-treatment-pdf-66141660564421 Last updated: 19 August 2020

<sup>4.</sup> AORN. Guidelines for Perioperative Practice, Denver, Colorado: AORN, Inc : 2018

#### **Pre-Operative Hair Removal**



Google Images

Only remove hair at the surgical site when it is clinically necessary as determined by the procedure and patient assessment.

## **Clipping Guidelines**

- American College of Surgeons and Surgical Infection Society
  - Hair removal should be avoided unless hair interferes with surgery
  - If hair removal is necessary, clippers should be used instead of a razor

# Nasal Decolonization



#### What does the nose have to do with it?

## **Nasal Decolonization**

- S. aureus colonization
  - Carriage is the most important independent risk factor for developing an SSI<sup>2</sup>
  - Usually associated with the nares (~70%)
  - Other sites includes the skin, axilla, groin / perineal space
  - Carriers of high numbers of S. aureus have 3-6 times the risk of HAIs<sup>1</sup>
- Swabbing the nares identifies 80%-90% of MRSA carriers<sup>2</sup>
- Patients may have *S. aureus* on the skin and other sites and not in the nose
- Decolonization of nasal and extranasal sites may reduce infection risk<sup>4</sup>
  - ASHSP report mupirocin should be used intranasally for all patients with documented colonization with Staph aureus (Strength of evidence for prophylaxis = A)<sup>3</sup>

<sup>1.</sup> Bode, Lonneke G. M. et. al. Preventing Surgical-Site Infections in Nasal Carriers of Staphylococcus aureus. N Engl J Med 362;1 January 7, 2010

<sup>2.</sup> Prokuski, Laura. Prophylactic Antibiotics in Orthopaedic Surgery. J Am Acad Orthop Surg 2008;16:283-293

<sup>3.</sup> Bratzler D, Dellinger, E. Patchen, et. al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health-Syst Pharm. 2013; 70:195-283

<sup>4.</sup> Courville, Xan, Tomek, Ivan et. al. Cost-Effectiveness of Preoperative Nasal Mupirocin Treatment in Preventing Surgical Site Infections in Patients Undergoing Total Hip and Knee Arthroplasty: A Cost-Effectiveness Analysis.ICHE February 2012; 33(2):152-159.

## **Guidelines and Recommendations**

- 2014 SHEA/IDSA Practice Recommendation
  - If unacceptably high SSI rates exist for surgical populations despite implementation of the basic SSI prevention strategies, then applying standard infection control methods for outbreak investigation and management are recommended, including:
    - Screen surgical patients for S. aureus and decolonize preoperatively for high risk procedures, including some orthopedic and cardiac procedures
  - Routine preoperative decolonization with mupirocin without screening and targeted use is not currently recommended due to concerns about evolving resistance.

#### **Guidelines and Recommendations**

American College of Surgeons/Surgical Infection Society Surgical Site Infection Guidelines—2016 Update

- MRSA Screening
  - Decision regarding whether to implement global *S. aureus* screening and decolonization protocols should depend on baseline SSI and MRSA rates
  - Clinical practice guidelines from the American Society of Health-System Pharmacists recommend screening and nasal mupirocin decolonization for *S. aureus*-colonized patients prior to total joint replacement and cardiac procedures
  - MRSA bundles (screening, decolonization, contact precautions, hand hygiene) are highly effective if adhered to; otherwise, there is no benefit
  - No standard decolonization protocol is supported by the literature; consider nasal mupirocin alone vs. nasal mupirocin plus chlorhexidine gluconate bathing
  - Decolonization protocols must be completed close to date of surgery to be effective
  - Vancomycin should not be administered as prophylaxis to MRSA-negative patients

## **Guidelines and Recommendations**

### 2017 World Health Organization (WHO)<sup>1</sup>

- Nasal decolonization with mupirocin for Cardio or Ortho surgeries: Patients with known nasal carriage of S. aureus should receive intranasal application of mupirocin ointment. (Strong recommendation)
- Nasal decolonization with mupirocin for other surgeries: Use of nasal mupirocin ointment is suggested (Conditional recommendation)

### 2017 Wisconsin Division of Public Health Supplemental Guidance for Preventions of SSIs<sup>2</sup>

### **Decolonizing the Nares for MSSA and MRSA:**

Although the optimal suppression regimen is unclear, the following is recommended:

- Standardized regimen of topical mupirocin (twice a day for 5-7 days) or,
- An alternative approach involving the use a nasal swab containing 5% or 10% povidone iodine applied to the nares 1 to 2 hours prior to surgery,
- Along with a 2% or 4% CHG body cleansing/shower (once a day for 2 days) prior to surgical admission.

### 2019 NICE – National Institute for Health and Care Excellence SSI Prevention and Treatment<sup>3</sup>

### Decolonizing the Nares for MSSA and MRSA:

- Consider nasal mupirocin in combination with a chlorhexidine body wash before procedures in which Staphylococcus aureus is a likely cause of a surgical site infection. This should be locally determined and take into account:
  - the type of procedure
  - individual patient risk factors
  - the increased risk of side effects in preterm infants (see recommendation 1.3.8)
  - the potential impact of infection. [2019]
- Maintain surveillance on antimicrobial resistance associated with the use of mupirocin.

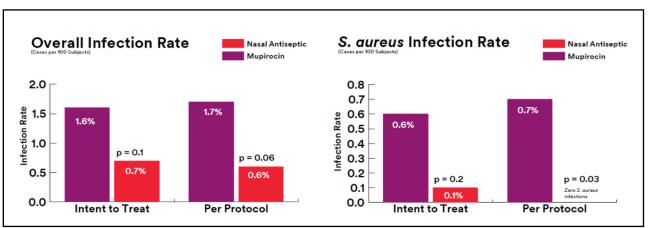
<sup>1.</sup> Benedet et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. The Lancet. Published online November 2, 2016 http://dx.doi.org/10.1016/S1473-3099(16)30398-X

<sup>2.</sup> Edmiston et al, Wisconsin Division of Public Health supplemental guidance for preventions of SSIs: An evidence-based perspective. January 2017. https://www.dhs.wisconsin.gov/publications/p01715.pdf. Accessed February 22, 2017.

<sup>3.</sup> NICE Guidelines. Surgical site infections: prevention and treatment. 11 April 2019. <u>https://www.nice.org.uk/guidance/ng125/resources/surgical-site-infections-prevention-and-treatment-pdf-66141660564421</u>. Last updated: 19 August 2020

# MRSA Decolonization

### **Clinical Evidence**


# **Preventing Surgical Site Infections:** A randomized, open-label trial of nasal mupirocin ointment and nasal povidone-iodine solution

Investigator initiated, prospective randomized controlled trial comparing SSI after arthroplasty or spine fusion surgery. Patients receiving two applications of 2% CHG cloths were randomized to:

- One time treatment of 5% nasal Povidone-Iodine (PI) or five days of nasal mupirocin ointment prior to surgery
- The primary end point was deep SSI within 3 months of surgery

#### **Conclusion:**

- 5% nasal PI may be considered as an alternative to mupirocin in a multifaceted approach to reduce SSI
- Other observation:
  - Compared to mupirocin in terms of cost and efficacy, 5% nasal PI provides more value, defined as quality of outcomes divided by cost
  - Application of 5% nasal PI by the patient care team just prior to surgery may ensure greater compliance



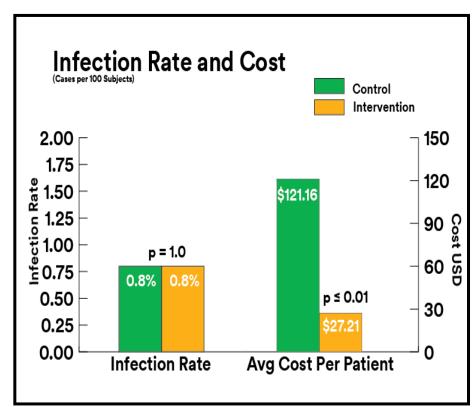
Significantly more adverse events were reported by patients in the mupirocin group (8.9%) than patients in the 5% nasal PI group (1.8%) (p<0.05 for all treatment related symptoms)

# Mupirocin Ointment vs. Povidone – Iodine Nasal Decolonization

### Maslow et. al. Patient Experience with Mupirocin or Povidone-Iodine Nasal

**Decolonization.** ORTHOPEDICS | Healio.com/Orthopedics. JUNE 2014 | Volume 37 • Number 6; e576-e581

Purpose: Evaluate and compare patient experiences and satisfaction with nasal decolonization with either nasal povidone-iodine (PI) or nasal mupirocin ointment (MO)

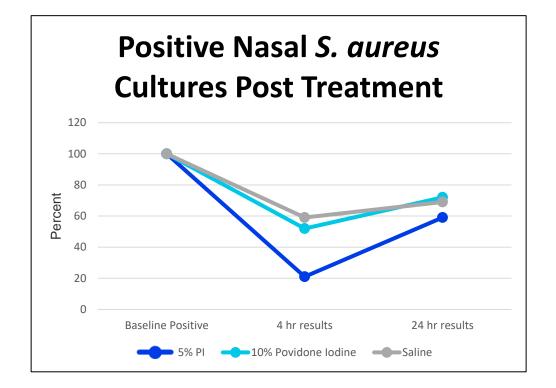

- 1,903 patients randomized to undergo preoperative nasal decolonization with either nasal MO or PI solution.
  - All were given the 2% CHG topical wipes
  - 1,679 (88.1%) interviewed prior to discharge
  - PI group 3.4% reported unpleasant or very unpleasant experience compared to the MO group, 38.8%.
  - Patients receiving PI solution preoperatively reported significantly fewer adverse events than the nasal MO group (p<.01)</li>
- Pre-operative nasal decolonization with either nasal PI or MO was considered somewhat or very helpful by more than two-thirds of patients

### **Retrospective study comparing infection rate and cost difference between two preoperative protocols in THA and TKA surgery**

- 1,853 patients were included
- No difference in SSI rate between groups:
   0.8% in both groups (p = 1.0)
- Significant difference in the mean cost per case: control group : \$121.16 vs. intervention group: \$27.21; (p≤ 0.01)
- Savings of \$93.95/patient

### **Conclusion:**

 There were significant cost savings with no difference in infection rates; therefore, the 5% povidone-iodine nasal antiseptic is financially and clinically successful.




### Results

# Do iodine-based solutions differ in their effectiveness for decolonizing intranasal Staphylococcus aureus?

Investigator initiated, prospective randomized controlled trial comparing nasal S. aureus cultures at baseline, 4 and 24 hours after treatment with off the shelf 10% povidone iodine, 5% povidone iodine, or saline (control)

- 429 patients were randomized, of which 95/429 (22.1%) were positive at baseline for *S. aureus* and 13.6% of these were MRSA
- 5% PI formulation demonstrated significantly more effective intranasal decolonization of *S. aureus* over the 4 hour time interval (p=0.003)
- 10% PI no different than saline (control)



The specially formulated 5% PI solution, which contains a specific adherent polymer, remains in the nares for a longer period, which may explain its better efficacy.

Rezapoor M, Nicholson T, Tabatabaee RM, Chen AF, Maltenfort MG, Parvizi J. Povidone-lodine–Based solutions for decolonization of nasal staphylococcus aureus: A randomized, prospective, placebo-controlled study. The Journal of Arthroplasty. 2017;32(9):2815-2819. doi://dx.doi.org/10.1016/j.arth.2017.04.039.

## **Summary of Clinical Evidence**

- One time application of a specially formulated 5% PVP-I Nasal Antiseptic helps reduce the risk of SSI when part of a preoperative protocol<sup>1,2,3</sup>
- It is cost effective<sup>1,2,3</sup>
- It has better antimicrobial efficacy in the nose than 10% PVP-I<sup>4</sup>

<sup>1.</sup> Phillips M., et al. Preventing Surgical Site Infections: A randomized, open-label trial of nasal mupirocin ointment and nasal povidone-iodine solution. Infect Control Hosp Epidemiol 2014; 35(7): 826-832

<sup>2.</sup> Bebko SP, Green DM, Awad SS. Effect of a Preoperative Decontamination Protocol on Surgical Site Infections in Patients Undergoing Elective Orthopedic Surgery With Hardware Implantation. JAMA Surg. Published online March 04, 2015. doi:10.1001/jamasurg.2014.3480.

<sup>3.</sup> Torres EG, Lindmair-Snell JM, Langan JW, Burnikel BG. Is preoperative nasal povidone-iodine as efficient and cost-effective as standard methicillin-resistant Staphylococcus aureus screening protocol in total joint arthroplasty? J Arthroplasty. 2016; 31: 215-218.

<sup>4.</sup> Rezapoor M, Nicholson T, Patel R, Mostafavi R, Chen AF, Parvizi J. Do iodine-based solutions differ in their effectiveness for decolonizing intranasal Staphylococcus aureus? Presented at the MSIS Annual Meeting, Cleveland, OH, August 2015

# Oral Decontamination



### What about the oral cavity?

### **Effect of a Preoperative Decontamination Protocol**

Bebko et al. Effect of a Preoperative Decontamination Protocol on Surgical Site Infections in Patients Undergoing Elective Orthopedic Surgery with Hardware Implantation. JAMA Surg. doi:10.1001/jamasurg.2014.3480. Published online March 4, 2015

Intervention: CHG + Oral Rinse + Nasal Povidone-Iodine Solution

| Population           | Total # Patients | SSI Rate      | P-value |
|----------------------|------------------|---------------|---------|
| Decolonized Patients | 365              | 1.1% (4/365)  | P=.02   |
| Control              | 344              | 3.8% (13/344) | P=.02   |

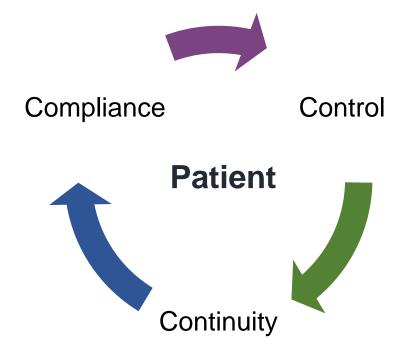
Multivariate logistic regression identified MRSA decontamination as an independent predictor of not developing an SSI (adjusted odds ratio, 0.24 [95% CI, 0.08-0.77]; p=.02).

**Conclusion and Relevance** – Our study demonstrates that preoperative MRSA decontamination with chlorhexidine washcloths and oral rinse and intranasal povidone-iodine decreased the SSI rate by more than 50% among patients undergoing elective orthopedic surgery with hardware implantation.

## **CHG - Oral Decontamination**

McCormack et. al. *Staphylococcus aureus* and the oral cavity: An overlooked source of carriage and infection? American Journal of Infection Control 2015; 43:35-37

- Staphylococci found in the oral flora
  - Carriage rates for Staphylococcus aureus 24% 84% in healthy adult oral cavities
  - Incidence in denture wearers 48%
- Chlorhexidine gluconate used in low doses in the oral cavity
  - Eliminates plaque
  - Antimicrobial activity


Conclusion – These findings suggest that *S. aureus* continues to be a frequent isolate in the oral cavity and perioral regions. The oral cavity should be considered a source of *S. aureus* in terms of cross-infection and dissemination to other body sites.

# Summary

# **Optimize SSI Prevention – 3Cs**

### Do not leave it up to the patient

- Did the patient absorb the SSI prevention message and do what is expected?
- Caregivers need to take CONTROL of the process
- Maintain CONTINUITY of prevention strategies
  - Apply 2% CHG in Pre-Op Holding
  - Apply nasal antiseptic in Pre-Op Holding
- Ensure COMPLIANCE
  - Takes 3 4 minutes



## **Outcome of SSI Prevention Strategies**

- Reduce risk for surgical site infections
- Reduce morbidity and mortality
- Reduce costs associated with SSI
  - Reduce length of stay
  - Reduce readmissions
- Reduce development of multi-drug resistant organisms (MRSA, VRE, etc.)
- Improved patient satisfaction / quality of life
- Reduce the risk of litigation
- Reduce risk to hospital reimbursement

## **Summary – Keys to Success**

- Weigh the risk vs. benefit and the cost vs. benefit based on your institution's goals for process improvement to reduce SSIs.
- Properly and consistently applied prevention strategies can reduce the risk of surgical site infections and ensuing morbidity and mortality
- Prevention requires bundled interventions applied as part of a horizontal strategy
  - Pre-operative antiseptic shower
  - Skin antisepsis before incision
  - Management of the oral and nasal flora
- Chlorhexidine gluconate plays a key role in the risk reduction of SSIs.
- Synergism
  - Effective team work and communication will improve patient outcome

# "Knowing is not enough, we must apply. Willing is not enough, we must do." Goethe

## Your Next Steps – Engage Experts (Collaborate)

- Develop a multidisciplinary team
  - Surgeon, IP, OR Director, Quality, Supply Chain, etc.
- Involve a champion to promote the program
  - Surgeon, Medical Director
- Seek and involve C-Suite support
  - VP of Quality, Chief Nursing Officer
- Involve frontline staff
  - OR, nursing units, educators, etc.

# Your Next Steps - Evaluate the data and the evidence

- Perform a risk assessment
- Audit and provide feedback on current process
  - Walk the current process with checklist of evidence-based practice
- Communicate clearly the intent posters, meetings, etc. across all providers and staff (pre-, intra-, and post- op)
- Active participation of the key stakeholders
- Standardize the bundle process across all service lines
  - Develop a computerized order set
- Standardize, where possible, the indications for use across all service lines

# Your Next Steps - Educate on the proposed bundle intervention (Communicate)

- Process (qualitative) and outcomes (quantitative)
- Indications for use of CHG
- Indications for use of the nasal antiseptics
- User directed education
- Physician directed education
- Patient directed education

# Your Next Steps - Execute the Bundle Intervention (Communicate)

- Communicate clearly the intent posters, meetings, etc. across all providers and staff (pre-, intra-, and post- op)
- Active participation of the key stakeholders
- Standardize the process across all service lines
  - Develop a computerized order set
- Standardize, where possible, the indications for use across all service lines
- Audit, audit, audit for compliance and make adjustments as needed

# **Questions?** Thank you!