

### Infection Prevention in the Covid-19 Era: What to Focus on for the Future

Michael Phillips, MD

APIC Greater NY and Long Island Chapter Fall Conference October 19, 2021

#### **Disclosures**

- No financial and non-financial disclosures
- These ideas are mine alone, not official policy

#### **Three Areas of Focus**

- 1. Surveillance
- 2. Respiratory protection
- 3. Teamwork

#### Surveillance

- 1. Incorporate molecular diagnostics
- 2. Build electronic data systems and communicate widely
- **3**. Embrace predictive analytics

#### **NYULH Covid-19 Variant Surveillance**



#### But regional surveillance is a critical need!

<u>NYSDOH Pilot Project</u>: Technology and Genomic Microbiology Platform for State-Wide Surveillance and Control of Antimicrobial Resistance



Molecular testing identifies pathogens of interest

#### But regional surveillance is a critical need!

<u>NYSDOH Pilot Project</u>: Technology and Genomic Microbiology Platform for State-Wide Surveillance and Control of Antimicrobial Resistance



DOH identifies clusters and trends

Facility B notified when patient admitted with pathogen of interest isolated at Facility A or C

#### **NYULH Hospital Admissions**



#### **Covid-19 Rate by Patient Zip Code**

Over past 7 days:

- Rate per 10,000 NYU Patients over past 7 days
- Number of patients with acute infection



# of patients with low Covid-19 PCR cycle threshold





As of October 14, 2021

#### **Covid-19 Rate by Patient Zip Code**





As of October 14, 2021

• Artificial Intelligence: Development of computer systems to perform tasks that normally require human intelligence

- Artificial Intelligence: Development of computer systems to perform tasks that normally require human intelligence
- Predictive modeling: Use of statistics to predict outcomes

- Artificial Intelligence: Development of computer systems to perform tasks that normally require human intelligence
- Predictive modeling: Use of statistics to predict outcomes
- Machine Learning: Analytics which are able to learn and adapt by following

algorithms and statistical models to analyze and draw inferences from the data

| Open access                      | Original research                                                                                                   |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BMJ Health &<br>Care Informatics | Development and validation of a<br>machine learning model to predict<br>mortality risk in patients<br>with COVID-19 |

Anna Stachel <sup>(i)</sup>, <sup>1</sup> Kwesi Daniel, <sup>1</sup> Dan Ding, <sup>1</sup> Fritz Francois, <sup>2</sup> Michael Phillips, <sup>3</sup> Jennifer Lighter<sup>4</sup>

- Artificial Intelligence: Development of computer systems to perform tasks that normally require human intelligence
- Predictive modeling: Use of statistics to predict outcomes
- Machine Learning: Analytics which are able to learn and adapt by following algorithms and statistical models to analyze and draw inferences from the data

Open Forum Infectious Diseases

MAJOR ARTICLE

![](_page_13_Picture_6.jpeg)

## Using Machine Learning and the Electronic Health Record to Predict Complicated *Clostridium difficile* Infection

Benjamin Y. Li,<sup>1</sup> Jeeheh Oh,<sup>1</sup> Vincent B. Young,<sup>23</sup> Krishna Rao,<sup>24</sup> and Jenna Wiens<sup>1,4</sup>

<sup>1</sup>Department of Electrical Engineering and Computer Science, <sup>2</sup>Department of Internal Medicine/Division of Infectious Diseases, and <sup>3</sup>Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan

#### **Respiratory Protection**

- **1**. Question the dogma: airborne vs droplet
- 2. Can we get to a simple and safe approach?
- 3. Personal Protective Equipment training: our new annual health assessment

#### **Epidemiologic triangle**

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

# Type and Duration of Precautions Recommended for Selected Infections and Conditions<sup>1</sup>

Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings (2007)

#### Appendix A: updates in September 2018

Respiratory virus Adenovirus Coronavirus (not Covid-19, SARS, MERS) Covid-19, SARS, MERS Enterovirus Human metapneumovirus Parainfluenza Pathogenic or novel influenza Rhinovirus RSV Seasonal influenza Isolation Precautions Droplet+Contact Standard Airborne+Contact Standard Contact Contact Contact (kids) Airborne Droplet Contact (kids, immunocompromised adults) Droplet

Pneumonia, viral, adults, not covered elsewhere

Standard

#### Exposure to Influenza Virus Aerosols During Routine Patient Care

![](_page_17_Figure_1.jpeg)

Patient

#### Measurements of Airborne Influenza Virus in Aerosol Particles from Human Coughs

![](_page_18_Figure_1.jpeg)

Lindsley et al, PLOSone, 2010

![](_page_19_Figure_0.jpeg)

Fennelly, Lancet Resp Med, 2020

#### What is an aerosol generating procedure?

VII. Aerosol Generating Procedures and Environmental Controls

- 1. Aerosol generating procedures.
  - a. The CDC definition of an aerosol generating procedures is:
    - i. Endotracheal intubation or extubation
    - ii. Non-invasive and manual ventilation such as BiPAP, CPAP or bag valve mask ventilation
    - iii. CPR
    - iv. Bronchoscopy
    - v. Sputum induction
    - vi. Open suctioning of airways
  - b. The NYULH definition of an aerosol generating procedure includes those defined by the CDC plus the following:
    - i. Administration of nebulized medication not in closed respiratory circuits
    - ii. High flow oxygen delivery
    - iii. Tracheostomy collar oxygen delivery
    - iv. Oral, airway and sinus surgery
    - v. Dental cleaning
    - vi. Pulmonary function testing or spirometry
    - vii. Nasopharyngeal and upper GI endoscopy
    - viii. Activities when a patient not consistently wearing a face mask is breathing heavily or coughing, such as:
      - 1. Exercise stress testing
      - 2. Cardiac rehabilitation therapy
      - 3. Metabolic testing
      - 4. Swallow studies

#### Can we get to a simple and safe approach to respiratory protection?

#### Assumptions:

- Aerosol generation by patients is variable, but "superspreading" occurs and may include particles <5  $\mu$ m in size
- The full spectrum of aerosol generating procedures is unknown
- The epidemiologic triangle can help us determine risk:
  - Is the microbe pathogenic?
  - Is the host at risk?
  - Is the environment promoting transmission?

#### Can we get to a simple and safe approach to respiratory protection?

#### Assumptions:

- Aerosol generation by patients is variable, but "superspreading" occurs and may include particles <5 μm in size</li>
- The full spectrum of aerosol generating procedures is unknown
- The epidemiologic triangle can help us determine risk:
  - Is the microbe pathogenic?
  - Is the host at risk?
  - Is the environment promoting transmission?

If the answer is yes:

- Perhaps the simplest and safest approach is respirators (not masks) for PPE
- Respirator (and PPE) training should be a key annual health assessment

![](_page_23_Picture_1.jpeg)

#### Patrick Lencioni

#### 1. Humble

- Be confident of our abilities and expertise
- Define success collectively
- Applaud colleagues

#### 1. Humble

- Be confident of our abilities and expertise
- Define success collectively
- Applaud colleagues
- 2. Hungry
  - Look for more to learn
  - Assume more responsibility
  - Think about the next step

#### 1. Humble

- Be confident of our abilities and expertise
- Define success collectively
- Applaud colleagues
- 2. Hungry
  - Look for more to learn
  - Assume more responsibility
  - Think about the next step
- 3. Smart
  - Have good "common sense" about people
  - Understand group dynamics
  - Listen and ask good questions

![](_page_27_Picture_0.jpeg)