Carbapenem Resistant Enterobacteriaceae (CRE)

Gregory Weston MD, MS
Physician Director of Infection Prevention and Control
Montefiore Medical Center
APIC Greater New York Chapter Meeting
1/15/20
Disclosure

- I have received funding for research through a subcontract that originated with Allergan

- I will briefly mention antibiotics that treat CRE
Objectives

- Know the definition of CRE – and recent changes to it
- Understand the mechanisms of carbapenem resistance
- Know that the most likely mechanism of resistance varies in different parts of the world
- Understand the implications of CRE for patient care
- Recognize risk factors for carbapenem resistance
- Discuss infection control interventions against CRE organisms
- Discuss screening for CRE organisms
Carbapenem-resistant Enterobacteriaceae (CRE) are a major concern for patients in healthcare facilities. Some bacteria in this family are resistant to nearly all antibiotics, leaving more toxic or less effective treatment options.
CRE Are Tough to Treat

Blood, Bacteriology Culture (2nd Set, Post-Antibiotic)

Status: Final result Visible to patient: No (Not Released) Next app't: None

Specimen Information: Blood

Blood, Bacteriology Culture

Gram Stain

From Aerobic and Anaerobic Bottles: Gram negative bacilli

This is an appended report. These results have been appended to

Susceptibility

<table>
<thead>
<tr>
<th>Susceptibility</th>
<th>CRE - Klebsiella pneumoniae ssp pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC/INTERPRETATION</td>
</tr>
<tr>
<td>Amikacin</td>
<td>32 ug/ml Intermediate</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>> 16 ug/ml Resistant</td>
</tr>
<tr>
<td>Ampicillin/Sulbactam</td>
<td>>16/8 ug/ml Resistant</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>> 16 ug/ml Resistant</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>> 16 ug/ml Resistant</td>
</tr>
<tr>
<td>Cefepime</td>
<td>> 16 ug/ml Resistant</td>
</tr>
<tr>
<td>Cefotaxin</td>
<td>> 16 ug/ml Resistant</td>
</tr>
<tr>
<td>Ceftriaxime/Avibactam</td>
<td>3 ug/ml Sensitive</td>
</tr>
<tr>
<td>Ceftriaxime</td>
<td>> 32 ug/ml Resistant</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>>2 ug/ml Resistant</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>>8 ug/ml Resistant</td>
</tr>
<tr>
<td>Identification</td>
<td>Identification</td>
</tr>
<tr>
<td>Meropenem</td>
<td>>8 ug/ml Resistant</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>>64/4 ug/ml Resistant</td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>0.38 ug/ml Resistant</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>1.5 ug/ml Sensitive</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>>8 ug/ml Resistant</td>
</tr>
<tr>
<td>Trimethoprim/Sulfamethoxazole</td>
<td>>2/38 ug/ml Resistant</td>
</tr>
<tr>
<td>a THIS ORGANISM IS A MDR</td>
<td>Resistant</td>
</tr>
<tr>
<td>a THIS ORGANISM IS A XDR</td>
<td>Resistant</td>
</tr>
</tbody>
</table>

1 Testing done for research purposes only

Montefiore

Albert Einstein College of Medicine

EINSTEIN

Doing More

Enterobacteriaceae Are Gram Negative Gut Bacteria

<table>
<thead>
<tr>
<th>Enterobacteriaceae</th>
<th>Not Enterobacteriaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>E. Coli</td>
<td>Acinetobacter baumanii</td>
</tr>
<tr>
<td>Enterobacter species</td>
<td>Stenotrophomonas maltophilia</td>
</tr>
<tr>
<td>Citrobacter species</td>
<td>Burkholderia cepacia</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>Enterococcus faecium</td>
</tr>
<tr>
<td>Proteus species</td>
<td></td>
</tr>
</tbody>
</table>

Other types of resistant bacteria are important but this lecture and the label “CRE” deals with Enterobacteriaceae
CDC Uses a Sensitive Definition for CRE

- Current CDC definition for CRE (post 2015):
 - Resistance to any Carbapenem (includes Ertapenem)
 OR
 - Detection of a Carbapenemase Enzyme

- Prior (2015) CDC definition for CRE:
 - Resistance or Intermediate susceptibility to Meropenem, Imipenem or Doripenem
 AND
 - Resistance to 3rd Generation Cephalosporins (Ceftriaxone)

- The newer definition includes more organisms

- The older definition was more specific to identify organisms with a carbapenemase enzyme
Beta Lactamases Destroy Beta Lactams in Between the Gram Negative Bacteria Double Membrane

By Jeff Dahl - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3647374
Carbapenemases are a Subset of Beta Lactamases

There Are A Few Types of Carbapenemases

- **KPC** – *Klebsiella pneumoniae* Carbapenemase
 - KPC-2 and KPC-3 are the most common in NYC and USA
 - Any species can have it (not just *Klebsiella*)

- **Oxa Carbapenemases**
 - Seen more often in Europe, Turkey, North Africa

- **Metallo Beta Lactamases**
 - New Delhi (NDM-1) – From Pakistan, India, China, Mid-East
 - VIM - Europe
 - IMP – Europe, Japan
 - The Metallo Beta Lactamases are resistant to some of the new antibiotics that work against KPC carbapenemases
Carbapenemase Distribution World Wide

KPC-2 and KPC-3 are the Most Common Carbapenemases in NYC

<table>
<thead>
<tr>
<th>CRE pathogen</th>
<th>KPC-2</th>
<th>KPC-3</th>
<th>NDM</th>
<th>OXA-48</th>
<th>TEM non-ESBL</th>
<th>SHV non-ESBL</th>
<th>SHV ESBL</th>
<th>CTX-M</th>
<th>AmpC</th>
<th>ompK35 mutation</th>
<th>ompK36 mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. pneumoniae (n = 97)</td>
<td>44 (45)</td>
<td>48 (49)</td>
<td>1 (1)</td>
<td>82 (85)</td>
<td>62 (64)</td>
<td>31 (32)</td>
<td>8 (8)</td>
<td>81 (84)</td>
<td>33 (34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KPC-2 (n = 44)</td>
<td>44 (100)</td>
<td></td>
<td></td>
<td></td>
<td>37 (84)</td>
<td>27 (61)</td>
<td>17 (39)</td>
<td>2 (5)</td>
<td>35 (80)</td>
<td>10 (23)</td>
<td></td>
</tr>
<tr>
<td>KPC-3 (n = 48)</td>
<td></td>
<td>48 (100)</td>
<td></td>
<td>43 (90)</td>
<td>31 (65)</td>
<td>13 (27)</td>
<td>2 (4)</td>
<td>42 (88)</td>
<td>21 (45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (n = 5)</td>
<td>1 (20)</td>
<td>2 (40)</td>
<td></td>
<td>4 (80)</td>
<td>1 (20)</td>
<td>4 (80)</td>
<td></td>
<td>4 (80)</td>
<td>2 (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacter spp. (n = 5)</td>
<td>1 (20)</td>
<td>3 (60)</td>
<td></td>
<td>4 (80)</td>
<td>1 (20)</td>
<td>4 (80)</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (n = 3)</td>
<td>1 (33)</td>
<td>1 (33)</td>
<td></td>
<td>1 (33)</td>
<td>2 (67)</td>
<td>1 (33)</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morganella morganii (n = 1)</td>
<td>1 (100)</td>
<td></td>
<td></td>
<td></td>
<td>1 (100)</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Satlin et al. Multicenter Clinical and Molecular Epidemiological Analysis of Bacteremia Due to Carbapenem-Resistant Enterobacteriaceae (CRE) in the CRE Epicenter of the United States. Antimicrobial Agents and Chemotherapy. 2017; 61: e02349-16
Carbapenemases on Plasmids can Spread

- Plasmids contain genes but are separate from the bacterial chromosome
- It is easier for a gene on a plasmid to get shared with other bacteria, even across species

Carbapenem Resistance without Carbapenemases May involve Porin mutations combined with other resistance elements

By Jeff Dahl - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3647374
Species of CRE affects Likelihood of Carbapenemase Production

<table>
<thead>
<tr>
<th>Carbapenemase Producing CRE N=37</th>
<th>Non-Carbapenemase Producing CRE N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumoniae 28 (76 %)</td>
<td>Enterobacter species 27 (59 %)</td>
</tr>
<tr>
<td>Enterobacter species 7 (19 %)</td>
<td>Klebsiella pneumoniae 14 (30 %)</td>
</tr>
<tr>
<td>E coli 1</td>
<td>E coli 3 (6.5 %)</td>
</tr>
<tr>
<td>Citrobacter species 1</td>
<td>Serratia 1</td>
</tr>
<tr>
<td></td>
<td>Proteus 1</td>
</tr>
</tbody>
</table>
Carbapenemase Production May Affect Patient Outcome in CRE Infection

Table 4. Fourteen-Day Mortality for Patients With Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) Compared With non-CP-CRE Bacteremia

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Odds Ratio (95% CI)</th>
<th>PValue</th>
<th>Adjusted Odds Ratio (95% CI)</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia</td>
<td>3.20 (1.06–9.61)</td>
<td>.04</td>
<td>4.92 (1.01–24.81)</td>
<td>.05</td>
</tr>
<tr>
<td>Pitt bacteremia score ≥4</td>
<td>9.13 (2.39–34.86)</td>
<td>.001</td>
<td>11.89 (2.38–59.30)</td>
<td>.005</td>
</tr>
<tr>
<td>Active empiric antibiotic therapy</td>
<td>.79 (0.27–2.29)</td>
<td>.67</td>
<td>2.46 (0.53–11.48)</td>
<td>.25</td>
</tr>
<tr>
<td>Active directed antibiotic therapy</td>
<td>.17 (0.04–0.72)</td>
<td>.01</td>
<td>0.10 (0.004–2.22)</td>
<td>.14</td>
</tr>
<tr>
<td>Days of combination antibiotic therapy</td>
<td>.89 (0.79–1.00)</td>
<td>.07</td>
<td>0.73 (0.59–0.93)</td>
<td>.01</td>
</tr>
<tr>
<td>Polymixin therapy administered</td>
<td>4.61 (1.16–18.3)</td>
<td>.03</td>
<td>5.57 (1.07–28.96)</td>
<td>.04</td>
</tr>
<tr>
<td>Diabetes</td>
<td>3.12 (0.99–9.84)</td>
<td>.05</td>
<td>3.42 (0.62–19.07)</td>
<td>.16</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>.45 (0.14–1.40)</td>
<td>.17</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Carbapenem therapy administered</td>
<td>.82 (0.27–2.52)</td>
<td>.74</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Meropenem minimum inhibitory concentration ≥16 μg/mL</td>
<td>1.40 (0.38–5.01)</td>
<td>.61</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

14 Day Mortality: 12 (32 %) in the CP group and 6 (13 %) in the Non CP group

Tamma et al. Comparing the Outcomes of Patients with Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae Bacteremia. Clinical Infectious Diseases. 2017; 64: 257-64
Patient Outcomes in CRE Infections are Poor

- 50% Mortality for Bloodstream Infection – likely improved with newer antibiotics

- Patients are often started on ineffective antibiotics
 - Median time to appropriate therapy 47 hours

- Patients often have multiple comorbidities prior to CRE infection

- Available antibiotics until recently have been poorly effective
 - Polymyxin/Colistin and Aminoglycosides are toxic
 - Tigecycline is associated with failure in bloodstream infection
Newer Anti-CRE Drugs Are an Improvement, But Not Perfect

<table>
<thead>
<tr>
<th>Infection Type</th>
<th>Bloodstream</th>
<th>UTI</th>
<th>Skin/Soft Tissue</th>
<th>Pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Day Clinical Success</td>
<td>75 %</td>
<td>88 %</td>
<td>67 %</td>
<td>36%</td>
</tr>
</tbody>
</table>

- Ceftazidime-Avibactam has shown improved results for bloodstream infection – concern about pneumonia results
 - Resistance has begun to emerge

- Meropenem-Vaborbactam and Eravacycline are other new options

- None of these drugs are effective against NDM-1

Shields et al. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrobial Agents and Chemotherapy. 2018; 62: e02497-17
CDC CRE Tool Kit – Basic Interventions

- Hand Hygiene
 - acquisition from the environment

- Appropriate use of PPE
 - acquisition from the environment

- Antimicrobial Stewardship
 - develop resistance from antibiotic exposure

- Environmental Cleaning
 - close attention to sink drains and splash areas around sink drains
CDC CRE Tool Kit – Specific Interventions

- Contact precautions for all Carbapenemase producing CRE
 - Might use surveillance cultures or a long duration of time without positive culture to stop contact precautions

- Notification system to alert clinicians when a CRE patient returns to the facility, or a new CRE result is identified

- Notify receiving facilities when transferring CRE patient

- Patient and staff cohorting
 - But might want to know mechanism of resistance before cohorting
CDC CRE Tool Kit – Advanced Interventions

- Screening contacts of CRE patients – for new introduction of CRE or a new carbapenemase

- Point prevalence survey – testing an entire unit in a suspected cluster or outbreak

- Active surveillance testing
 - For facility or a high risk unit or population
 - Patients admitted from outside the US

- Chlorhexidine bathing
Components of Successful Anti-CRE Interventions From Quasi Experimental Studies

- Contact Precautions
- Active Screening
- Isolation and Cohorting of Staff
- Monitoring and Feedback for Infection Control Practices
- Hand Hygiene Campaign

Active Screening in National Israeli Intervention Outbreak Setting

- **Acute Care**
 - Ward contacts of CRE cases
 - Patients recently admitted to or transferred from other facilities
 - Patients on wards with high incidence of CRE

- **Post Acute Care Hospitals**
 - Serial point prevalence surveys

Active Screening in a CRE Endemic US City (Chicago)

- Started with Screening of ICU patients and transfers from other facilities (including LTACH, where CRE prevalence 30%)
 - Screened more than 100 patients for each CRE found

- Stopped ICU screening and continued screening of transfers from other facilities
 - In Medical and Surgical ICU they screened approximately 30 patients per CRE found
 - 10 of 21 patients identified during the first screening period would have been missed

Shimasaki T et al. Active screening and interfacility communication of carbapenem-resistant enterobacteriaceae (CRE) in a tertiary care hospital. Infection Control and Hospital Epidemiology. 2018: 39; 1058-1062
Regional Coordination to Slow the Rise of CRE

Take Home Points

- Implementation of 2015 CDC definition of CRE may cause misleading rise in CRE rate. The 2015 definition identifies a higher percentage of non-carbapenemase producing CRE.

- Carbapenemase producing CRE might more easily spread resistance to other bacteria, and may be associated with worse patient outcomes.

- KPC is the most common carbapenemase in NY/USA but other parts of the world are different, and other carbapenemases are coming to NY.

- Invasive CRE infections are associated with poor patient outcomes – newer antibiotics may not fully solve this problem.
Take Home Points

- Prior cultures with CRE, residence in SNF, mechanical ventilation, other healthcare exposures are associated with CRE infection – epidemiology in your own institution may determine which patients are more likely to have CRE.

- Infection control interventions against CRE include the fundamentals of IPC (hand hygiene, isolation) as well as advanced interventions (ie screening).

- Active screening of CRE has been used in outbreak and endemic settings but the optimal approach is not clear.

- Coordination among facilities in the same region can magnify individual infection prevention interventions.