Major article

Collateral benefit of screening patients for methicillin-resistant *Staphylococcus aureus* at hospital admission: Isolation of patients with multidrug-resistant gram-negative bacteria

Makoto Jones MD a,b, Christopher Nielson MD c,d, Kalpana Gupta MD, MPH e,f, Karim Khader PhD b, Martin Evans MD g,h,i,*

a Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT
b Department of Internal Medicine, University of Utah, Salt Lake City, UT
c Veterans Affairs Reno Medical Center, Reno, NV
d Department of Internal Medicine, University of Nevada, Reno, NV
e Department of Veterans Affairs, Boston Veterans Affairs Health Care System, National Center for Occupational Health and Infection Control, Office of Public Health, Boston, MA
f Department of Internal Medicine, Boston University, Boston, MA
g Department of Veterans Affairs, MRSA/MDRO Prevention Office, National Infectious Diseases Service, Veterans Health Administration, Washington, DC
h Lexington Veterans Affairs Medical Center, Lexington, KY
i Department of Internal Medicine, University of Kentucky, Lexington, KY

Key Words: MRSA
MDRO
Pseudomonas aeruginosa Acinetobacter
Enterobacteriaceae
Carbapenem-resistant Enterobacteriaceae
Screening
Infection control
Contact precautions

Background: Surveillance at hospital admission for multidrug-resistant (MDR) gram-negative bacteria (GNB) is not often performed, potentially leaving patients carrying these organisms unrecognized and not placed in transmission precautions until they develop infection. Veterans Affairs (VA) facilities screen all admissions for methicillin-resistant *Staphylococcus aureus* (MRSA) and place positive patients in contact precautions. We assessed how often patients with MDR GNB in clinical cultures obtained within 30 days following admission would have been in contact precautions because of a positive MRSA admission screen.

Methods: MRSA screening and MDR GNB culture results were extracted from a database of patients admitted to all VA acute care medical facilities from January 2009-December 2012.

Results: Of patients with MDR GNB-positive cultures within 30 days following admission, up to 44.3% (dependent on bacterial species) would have been in contact precautions because of a positive MRSA admission screen. Admissions with a positive MRSA screen had odds for MDR GNB in a culture 2.5 times greater than those with a negative screen (95% confidence interval [CI], 2.4-2.6). Odds ratios were 2.4 (95% CI, 2.3-2.5) for MDR Enterobacteriaceae, 2.7 (95% CI, 2.5-2.9) for MDR *Pseudomonas aeruginosa*, and 4.3 (95% CI, 3.8-4.8) for MDR *Acinetobacter* spp.

Conclusions: Patients may be serendipitously placed in contact precautions for MDR GNB when isolated for a positive admission MRSA screen.

Published by Elsevier Inc. on behalf of the Association for Professionals in Infection Control and Epidemiology, Inc.
facility admissions nationwide are screened for MRSA. Positive patients are placed in contact precautions\(^7\) as soon as the results are returned. Because polymerase chain reaction (PCR) testing is usually used for admission screening, the median turnaround time from admission to reporting of the screening result is 12.5 hours.\(^8\) Positive patients usually remain in contact precautions for the duration of their admission and are again placed in contact precautions without rescreening if readmitted within 1 year.

We evaluated a large national Veterans Affairs (VA) database to determine how frequently inpatients with MDR GNB-positive clinical cultures within 30 days following admission might have already been isolated if they had been placed in contact precautions for a positive MRSA screen at admission.

METHODS

Nasal screening and clinical culture results from patients admitted to VA acute care medical facilities from January 2009–December 2012 were extracted from national clinical microbiology laboratory data using an approach described previously.\(^3\) Nasal screening was performed as previously described,\(^1\) and a clinical culture was defined as a specimen obtained from any body site, fluid, or drainage other than the specimens obtained for screening. As a measure of nasal MRSA carriage status, all nasal screens for MRSA obtained 12 months prior to and within 24 hours after admission to an acute care facility were identified. MDR GNB were defined as organisms with acquired non-susceptibility to at least 1 agent in \(\geq 3\) antimicrobial classes.\(^10\) A history of MDROs was defined as MRSA, vancomycin-resistant Enterococcus, or MDR GNB isolated from a clinical culture or surveillance screen within 12 months prior to hospital admission. A new MDR GNB event was defined as recovery of an MDR GNB within 30 days following admission in a clinical culture, therefore capturing some MDR GNB that were present but unknown on admission or were hospital acquired. The MDR GNB of interest for this analysis included MDR Enterobacteriaceae (including extended-spectrum \(\beta\)-lactamase producing bacteria and carbapenem-resistant bacteria), MDR Pseudomonas aeruginosa (including carbapenem-resistant organisms), and MDR Acinetobacter spp (including carbapenem-resistant organisms). Bacteria from clinical cultures were isolated, identified, and characterized using standard procedures observed at each facility. Clinical cultures were restricted to those that underwent antimicrobial susceptibility testing.

Comparisons of proportions were made using the \(\chi^2\) test. Generalized linear mixed models were used to predict the binary outcome of MDR GNB-positive clinical cultures during or after admission from MRSA PCR screening results. Random effects of facilities were also incorporated. Stata version 12.1 (StataCorp, College Station, TX) was used.

This analysis was approved by the Research Review Committee of the VA Salt Lake City Health Care System and the Institutional Review Board of the University of Utah.

RESULTS

During the 4-year analysis period, there were 1.6 million VA acute care facility admissions (759,759 unique patients) nationwide that received a PCR MRSA nasal screen. Of these, 14.7% were positive at admission or had been positive within the prior year, and 6.3% had a history of a positive MDRO culture in the prior year. The percentage of admissions with MRSA-positive nasal screening or previous positive MDRO culture was 17.7%.

The frequencies of clinical cultures yielding MDR GNB within 30 days following admission were evaluated with respect to initial MRSA screening results. Overall, 2.4% of patients with a MRSA-positive screening had a subsequent new MDR GNB clinical culture compared with 0.9% of those with a negative MRSA screen (\(P < .001\)). Among admissions with a positive MRSA screen, the percentage that had a subsequent positive MRD GNB clinical culture varied by organism and ranged from 0.2% for MDR Acinetobacter spp to 1.9% for MDR Enterobacteriaceae. Of the 17,677 admissions with a MDR GNB, 1,163 had isolates producing extended-spectrum \(\beta\)-lactamases and 3,054 had isolates that were carbapenem resistant.

Overall, 30.7% of admissions with a subsequent MDR GNB-positive clinical culture had a positive admission MRSA screen (sensitivity) (Table 1; Fig 1). The percentage ranged from 29.8% for MDR Enterobacteriaceae to 44.3% for MDR Acinetobacter. The percentage increased from 36.3%-54.0% (by species) if patients with an MDRO in the year prior to admission were also included. Of note, 85.5% of admissions without a subsequent MDR GNB-positive clinical culture had a negative admission MRSA screen (specificity).

Table 1

<table>
<thead>
<tr>
<th>MDR GNB</th>
<th>Patients with MDR GNB</th>
<th>Patients with MDR GNB and MRSA positive at admission</th>
<th>Patients with MDR GNB and MRSA positive at admission or with history of multidrug-resistant organism* in last 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR Enterobacteriaceae</td>
<td>14,607</td>
<td>4,359 (29.8)</td>
<td>5,351 (36.6)</td>
</tr>
<tr>
<td>MDR Pseudomonas aeruginosa</td>
<td>2,761</td>
<td>887 (32.1)</td>
<td>1,077 (39.0)</td>
</tr>
<tr>
<td>MDR Acinetobacter spp</td>
<td>1,141</td>
<td>505 (44.3)</td>
<td>616 (54.0)</td>
</tr>
<tr>
<td>Any of above</td>
<td>17,677</td>
<td>5,422 (30.7)*</td>
<td>6,646 (37.6)*</td>
</tr>
</tbody>
</table>

*Including MDR GNB, MRSA, and vancomycin-resistant Enterococcus.
*Including extended-spectrum \(\beta\)-lactamase and carbapenem-resistant organisms (defined in Methods section).

Pooled values.

Fig 1

Euler diagram of admissions that have a positive (+) methicillin-resistant Staphylococcus aureus (MRSA) polymerase chain reaction hospital admission nares screen, have a history of a clinical multidrug-resistant organism (MDRO) (including MRSA, vancomycin-resistant Enterococcus, and multidrug-resistant gram-negative bacteria [MDR-GNB]), and have a new clinical MDR-GNB isolated within 30 days following admission to the hospital. Numbers are rounded from actual values.
increased risk for transmitting MDR GNB to others within the conclusions of others, our high-risk MDR GNB with minimal or no added cost. In contrast with trying MRSA may have value with respect to reducing exposure to universal infection prevention practices, such as hand hygiene when early isolation of patients with MDR GNB. There may be a collateral benefit of isolating patients who are at large national sample size, robust assessment of MRSA nasal carriage of patients carriages of MRSA or clinical MDRO in a substantial proportion of patients without MRSA given the high specificity of 85%. Further work using MRSA status as a predictor of MDR GNBs while accounting for factors (eg, intensive care, comorbidities, geographic variation) in resistance prevalence would be of interest for informing stewardship policies on the need for empirical advanced spectrum gram-negative coverage with carbapenems or other agents with activity against MDR GNB.

We acknowledge limitations to our analysis. The VA population is unique (mainly older men) and may not be representative of other populations. Patients colonized with MRSA may also have more comorbidities than those not colonized and be cultured more frequently, thereby increasing the chance of detecting MDR GNB. We surmise that most MDR GNB that were recovered in clinical cultures within 30 days following admission were ones present at the time of admission; however, screening for MDR GNB was not performed. Therefore, we do not know if subsequent recovery of these organisms represented acquisition in hospital. It is possible that patients acquired MDR GNB once admitted because of suboptimal infection control practices. However, if this were the case, it would be difficult to explain why the odds of having MDR GNB were higher in patients in contact precautions for MRSA than in those not in isolation. Another possible limitation of this analysis is that we were unable to determine if the isolates from clinical cultures represented ones that were colonizers or caused infection. In either case, facilities might want to have patients with MDR GNB in contact precautions. Finally, we examined the potential for MDR GNB transmission but not the outcomes of transmission. Ultimately, an assessment on outcomes is necessary. Some studies have addressed this to a limited extent, but our findings suggest that specific pathogens should be investigated (as opposed to any pathogens) because different pathogens appear to have different relationships with MRSA. The strengths of this study include the large national sample size, robust assessment of MRSA nasal carriers, and electronically available national database of all clinical microbiologic cultures.

In conclusion, identification and isolation of MRSA nasal carriers have the potential to result in benefits beyond prevention of transmission and infection with a single organism (MRSA) and may help reduce the spread of MDR GNB. Collateral effects on nontargeted pathogens should be routinely examined in infection control studies targeting specific organisms. Further evaluations of the effectiveness and cost-savings associated with MRSA screening need to take these findings into consideration as a potential added benefit.

Table 2

<table>
<thead>
<tr>
<th>MDR GNB</th>
<th>Odds ratio¹</th>
<th>95% confidence interval¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR Enterobacteriaceae</td>
<td>2.4</td>
<td>2.3-2.5</td>
</tr>
<tr>
<td>MDR Pseudomonas aeruginosa</td>
<td>2.7</td>
<td>2.5-2.9</td>
</tr>
<tr>
<td>MDR Acinetobacter spp</td>
<td>4.3</td>
<td>3.8-4.8</td>
</tr>
<tr>
<td>Any of the above</td>
<td>2.5</td>
<td>2.5-2.6</td>
</tr>
</tbody>
</table>

GNB, gram-negative bacteria; MDR, multidrug-resistant.

¹Including extended-spectrum β-lactamase and carbapenem-resistant organisms (defined in Methods section).

Discussions

Our analysis demonstrates an association between nasal MRSA carriage at hospital admission and subsequent recovery of MDR GNB from clinical cultures within the next 30 days. The relationship between MRSA nasal carriage at admission and subsequent infection was strongest with Acinetobacter spp. Overall, new MDR GNB events may be preceded by nasal MRSA-positive screens or a history of MRSA or clinical MDRO in a substantial proportion of admissions.

Others have shown that patients may be co-colonized with multiple different MDROs, including Enterobacteriaceae, Acinetobacter spp, P aeruginosa, MRSA, and vancomycin-resistant Enterococci in acute and long-term care facilities. However, routine admission screening for MDR GNB is generally not performed, and patients carrying these organisms may remain unidentifed and not placed in transmission precautions. Our data, taken from a large number of hospitals, suggest carriage of MRSA in the anterior nares may serve as a marker to identify patients with a higher likelihood of harboring MDR GNB. Therefore, when patients are placed in contact precautions because of a positive MRSA screen, there may be a collateral benefit of isolating patients who are at increased risk for transmitting MDR GNB to others within the hospital. Potentially, screening and identification of patients carrying MRSA may have value with respect to reducing exposure to high-risk MDR GNB with minimal or no added cost. In contrast with the conclusions of others, our findings suggest that there may be a beneficial horizontal (across pathogens) effect of an apparent vertical strategy (MRSA screening). This appears to be true in VA facilities which have a high-risk population, documented transmission in the past, and data showing lower transmission of MRSA with universal screening. Infection Control personnel at other facilities may wish to adopt universal screening for MRSA as is done in the VA or after assessing their incidence of MDRO HAIs balanced against the potential cost and labor of screening, employ a limited program targeting high-risk patients to gain the potential benefit of early isolation of patients with MDR GNB.

Our data also underscore the value of strict attention to universal infection prevention practices, such as hand hygiene when moving from a known MRSA-positive patient to another MRSA-positive patient, even when they are cohorted in the same room, because each individual may harbor other MDROs. This difference in roommate colonization has been demonstrated previously with MRSA and methicillin-sensitive S aureus co-colonization. The current study highlights additional pathogens that may be transmitted between patients if proper cleaning and hand hygiene are not performed. Education of health care workers regarding the risk of transmitting not only MRSA, but also more difficult-to-treat organisms (eg, carbapenem-resistant Enterobacteriaceae) could potentially improve compliance with contact precautions and hand hygiene practice. In addition, empirical antibiotic therapy for patients suspected of infection may need to be broader in patients with MRSA, given the higher likelihood of having MDR GNB concurrently, and conversely, could potentially be narrower in patients without MRSA given the high specificity of 85%. Further work using MRSA status as a predictor of MDR GNBs while accounting for factors (eg, intensive care, comorbidities, geographic variation) in resistance prevalence would be of interest for informing stewardship policies on the need for empirical advanced spectrum gram-negative coverage with carbapenems or other agents with activity against MDR GNB.

References

